Joined IBOtoolbox 5/2011
 I'm currently offline
active contributor

IBOtoolbox adserver v3.1
IBOtoolbox monitizer v3.1
IBOtoolbox adserver v3.1

Published on 6/1/2018 additional information available

Value of Big Data

# value

Big data is now being generated all around us. So what? It's the applications. It is the way in which big data can serve human needs that makes it valued. Let's look at a few examples of the applications big data is allowing us to imagine and build. Big data allows us to build better models, which produce higher precision results.

We are witnessing hugely innovative approaches in how companies market themselves and sell products. How human resources are managed. How disasters are responded to. And many other applications that evidenced based data is being used to influence decisions.

What exactly does that mean? Here is one example. Many of you might have experienced it.

Amazon "knows" of some things I've been looking for - they personalize what they show me. Which hopefully helps narrow down the huge raft of options I might get when I am just searching on dinner plates.

Now, businesses can leverage technology to make better informed decisions that are actually based on signals generated by actual consumers. Big data enables you to hear the voice of each consumer as opposed to consumers at large.

Walmart and Target, use information to personalize their communications with their costumers, which in turns leads to better met consumer expectations and happier customers.

In effect, big data has enabled personalized marketing. Consumers are copiously generating publicly accessible data through social media sites, like Twitter and/or Facebook. Through such data, the companies are able to see their purchase history, what they searched for, what they watched, where they have been, and what they're interested in through their likes and shares.

Let's look at some examples of how companies are putting this information to build better marketing campaigns and reach the right customers.

One area we are all familiar with are the recommendation engines. These engines leverage user patterns and product features to predict best match product for enriching the user experience.

If you ever shopped on Amazon, you know you get recommendations based on your purchase. Similarly, Netflix would recommend you to watch new shows based on your viewing history.

Another technique that companies use is sentiment analysis - analysis of the feelings around events and products.

On I can read reviews before purchasing, as well as, write a product-review for a purchase made. This way, other customers can be informed.

But more importantly, Amazon can keep a watch on the product videos and trends for a particular product.

For example, let's take the case of blue-dinner-plates purchased and their reviews - they can judge if a product review is positive or negative.

Reviews are written in English and a technique called natural language processing (NLP) is used to analyze opinions about a product. Sentiment analysis often gets referred to as opinion mining.

News channels are filled with Twitter feed analysis every time an event of importance occurs, such as elections.

Brands utilize sentiment analysis to understand how customers relate to their product - positively, negatively, neutral. This depends heavily on use of natural language processing.

Mobile devices are ubiquitous and people almost always carry their cellphones with them. Mobile advertising is a huge market for businesses.

Platforms utilize the sensors in mobile devices, such as GPS, and provide real time location based ads, offer discounts, based on this deluge of data.

This time, let's imagine that I bought a new house and I happen to be in a few miles range of a Home Depot. Sending me mobile coupons about paint, shelves, and other new home related purchases would remind me of Home Depot. There's a big chance I would stop by Home Depot.

What kinds of big data are needed to make this happen. There's definitely the integration of my consumer information and the online and offline databases that include my recent purchases.

But more importantly, the geolocation data that falls under a larger type of big data, spacial big data - Spacial-data.

Global consumer behavior can be used for product growth. We are now moving from personalize marketing to the consumer behavior as a whole.

Every business wants to understand their consumer’s collective behavior in order to capture the ever-changing landscape.

Several big data products enable this by developing models to capture user behavior and allow businesses to target the right audience for their product. Or, develop new products for uncharted territories.

Let's look at this example. After an analysis of their sales for weekdays, an airline company might notice that their morning flights are always sold out, while their afternoon flights run below capacity.

This company might decide to add more morning flights based on such analysis. Notice that they are not using individual consumer choices, but using all the flights purchased without consideration to who purchased them.

They might, however, decide to pay closer attention to the demographic of these consumers using big data to also add similar flights in other geographical regions.

With rapid advances in genome sequencing technology, the life sciences industry is experiencing an enormous draw in biomedical big data.

This biomedical data is being used by many applications in research and personalized medicine.

Did you know genomics data is one of the largest growing big data types? Between 100 million and 2 billion human genomes could be sequenced by year 2025 - this would require between 2 exabytes and 40 exabytes in data storage.

In comparison, all of YouTube only requires 1 to 2 exabytes a year. An exabyte is 10 to the power 18 bytes. That is, 18 zeros after 40. Analysis of such massive volumes of sequence data is expensive. It could take up to 10,000 trillion CPU hours.

One of the biomedical applications that this much data is enabling is personalized medicine. Before personalized medicine, most patients without a specific type and stage of cancer received the same treatment, which worked better for some than the others.

Research in this area is enabling development of methods to analyze large scale data to develop solutions that tailor to each individual, and hence hypothesize to be more effective.

A person with cancer may now still receive a treatment plan that is standard, such as surgery to remove a tumor. However, the doctor may also be able to recommend some type of personalized cancer treatment.

A big challenge in biomedical big data applications, like many other fields, is how we can integrate many types of data sources to gain further insight to a problem.

Big data from a variety of sources have been used for personalized patient interventions.

Another application of big data comes from interconnected mesh of large number of sensors implanted across smart cities.

Analysis of data generated from sensors in real time allows cities to deliver better service quality to inhabitants - reduce unwanted pollution, traffic congestion, higher than optimal cost on delivering urban services.

As a summary, big data has a huge potential to enable models with higher precision in many application areas. And these highly precise models are influencing and transforming lives and businesses.

Contact > Dominic Fernandez

defining, designing and delivering solutions to help businesses achieve results - efficiently and effectively!

You must be an IBOtoolbox member to comment on IBO press releases.  Click here to signup, its free.